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AFIT-ENV-MS-15-D-035 

Abstract 

 Large military platforms have encountered major performance and reliability 

issues due to an increased number of incidents with counterfeit electronic parts. This has 

drawn the attention of Department of Defense (DOD) leadership making detection and 

avoidance of counterfeit electronic parts a top issue for national defense. More defined 

regulations and processes for identifying, reporting, and disposing of counterfeit 

electronic parts are being revised to raise awareness for this issue, as well as enhance the 

detection of these parts. Multiple technologies are currently employed throughout the 

supply chain to detect counterfeit electronic parts. These methods are often costly, time-

consuming, and destructive. This research investigates a non-destructive test method that 

collects radiated electromagnetic emissions from functional devices using a commercially 

available system, the APREL EM-ISight. A design of experiments (DOE) is created and 

executed to determine the significant system factors and interactions. These factors are 

then optimized for the desired responses. The sensitivity of the system is analyzed by 

scanning a commercial-off-the-shelf (COTS) field-programmable gate array (FPGA) at 

the optimized factor levels established from the DOE and varying the programmed 

signal. This research established the viability of using APREL’s EM-ISight to detect a 

device’s inherent electromagnetic signature by successfully identifying a defective board 

and characterizing the process variations of multiple boards. Another conclusion of this 

research is the tradeoff between resolution and scan time. 
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INVESTIGATION OF ELECTROMAGNETIC SIGNATURES OF A FPGA 
USING AN APREL EM-ISIGHT SYSTEM 

 
I. Introduction 

General Issue 

Over the last 15 years, an increasing number of counterfeit electronic parts have 

become a critical issue for both industry and the Department of Defense (DOD) 

(Aerospace Industries Association, 2011). Everything from discrete electronic 

components and integrated circuits (ICs) to circuit boards are at risk. Based on the 

Defense Industrial Base Assessment: Counterfeit Electronics, a counterfeit part is not 

genuine if any of the following five criteria are met (U.S. Department of Commerce, 

2010). It: 

1. is an unauthorized copy 
2. does not conform to original OCM* design, model, and/or performance 

standards 
3. is not produced by the OCM or is produced by unauthorized contractors 
4. is an off-specification, defective, or used OCM product sold as “new” or 

working 
5. has incorrect or false markings and/or documentation 

*OCM refers to the Original Component Manufacturer. 

The total value of counterfeit electronic parts in the G20 economy was forecasted 

to cost between $1.2 and $1.7 trillion in 2015 (International Chamber of Commerce, 

2011). In addition to the projected costs, security, safety, and reliability topics are other 

prime concerns associated with counterfeit electronic parts. The cost value of recycled 

and remarked parts is estimated to contribute to over 80% of all counterfeit parts in 

circulation (Kessler & Sharpe, 2010). U.S. companies were found to be largely unaware 

of any legal requirements or liabilities for the disposal of parts (U.S. Department of 
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Commerce, 2010). This ignorance in the US permitted electronic waste to be shipped to 

China for disposal. These shipments created a new market for organized crime and 

entrepreneurialship through disassembly and overhauling of components. Hence, China is 

the leading source for counterfeit components. These devices often make their way back 

into the hands of the consumer unnoticed. This research focuses on the detection of 

reused counterfeit parts using a proposed new method of scanning to detect a variation in 

the 3-D electromagnetic signature at the board level.  

Problem Statement  

Counterfeit electronic parts are infiltrating major program systems resulting in 

compromised integrity that degrades system reliability and performance. It is desirable to 

be able to test electronic parts to identify counterfeit electronic parts in a nondestructive, 

cost and time efficient manner with a high level of confidence. Analyzing a part’s unique 

electromagnetic signature using APREL’s EM-ISight automated system is hypothesized 

to be a novel way to accomplish this task. 

Research Questions 

The research questions below addresses the overall focus of this thesis.  

- What are counterfeit electronic parts? 

- How can counterfeit electronic parts be detected? 

- How can reused electronic parts be detected? 

Investigative Questions 

The following investigative questions support the study of the research question. 
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- Can counterfeit electronic parts be detected using the part’s unintentional 

electromagnetic signature? 

- How effective is the APREL EM-ISight at detecting counterfeit electronic 

parts? 

- What is the optimal test setup to detect counterfeit electronic parts? 

- How repeatable are the test results? 

Research Focus 

The scope of this research focuses primarily on item four in the general issue 

discussion above, “an off-specification, defective, or used OCM product sold as “new” or 

working” (U.S. Department of Commerce, 2010). A commercial-off-the-shelf (COTS) 

board containing a field programmable gate array (FPGA) is the circuit board utilized for 

testing the inherent electromagnetic signature. Every device produces an internal 

electromagnetic emission (EME). Often, these emissions interfere with other parts on the 

board and a unique electromagnetic signature is created. The FPGA can be 

reprogrammed to allow for a potential new electromagnetic signature based on 

component functionality. These signatures are collected and analyzed using the APREL 

EM-ISight system. 

Methodology Overview 

The methodology implemented for this research is a three step process. The first 

step researches current counterfeit parts detection techniques in Chapter II. The second 

phase is composed of conducting several tests. In this phase a design of experiments 

(DOE) is implemented to optimize the test routine. Then, a comparative study is 
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conducted between several COTS boards to determine manufacturing process variations. 

A sensitivity analysis is also accomplished to determine the system boundaries for 

identifying minor deviations. The third and final stage is a comprehensive analysis of all 

the data collected to determine the effectiveness of an electromagnetic signature in 

determining a counterfeit part. 

Assumptions/Limitations 

The most significant assumption in this research is that the circuit boards 

examined in this thesis are “known good” parts and are indeed not a counterfeit. Having 

an untampered new part is imperative to the baseline results. The only verification of this 

assumption was optical examination and inspection of the parts and documentation upon 

arrival. One limitation of the unit of analysis, in this research, is the chip and not 

individual components. With the emphasis placed at the chip level, a variation in the 

electromagnetic signature can occur due to one or more components or a combination of 

components being reused, damaged, or failing. 

Another limitation potentially involves the capability of the equipment used to 

detect counterfeit parts. An electric field (E-field) is the amount of electric force per unit 

charge. Electric fields can be created by the change in magnetic fields. A magnetic field 

(H-field) is the force on moving a charge. Magnetic fields are produced by the flow of 

electrons that create a current. Both fields show the behavior of an operational device and 

exhibit how signals and waves propagate inside the device. The EM-ISight tool is limited 

to a 0.03 mm spatial resolution for the E and H-field probes. The frequency range is also 

limited based on the probe, low noise amplifier (LNA), and spectrum analyzer. The probe 
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selected in this research has a maximum frequency range of 6 GHz. In this case, the study 

will only use a frequency range of 50 MHz to 550 MHz. 

Implications 

The ability to detect reused counterfeit parts sold as new will be useful for both 

industry and DOD. The National Defense Industrial Association (NDIA) defined the 

procurement process, and more specifically the detection and avoidance of used 

counterfeit parts, as one of their top issues in 2014 (National Defense Industrial 

Association, 2014). The financial liability for the repair or replacement of counterfeit 

electronic parts is a major concern since the parts are usually introduced several levels 

deep in the supply chain. These liabilities can often bankrupt small businesses. This test 

procedure could be an effective way to determine the authenticity of devices currently 

implemented in major programs without destroying the unit. In addition, it could be a 

way to determine the health status of the system after use in stressful test conditions. This 

can aid in the lifetime maintenance and functionality of the overall system.   

Preview 

The remainder of this research is divided into four additional chapters. Chapter II 

provides a literature review of current counterfeit detection techniques and recent tests on 

electromagnetic emission and signature variations and their causes. Chapter III delivers a 

detailed methodology of the research and test protocol. Chapter IV discusses the analysis 

and results drawn from the data collection. Chapter V concludes the thesis with 

recommendations acquired from this research and new opportunities for future research. 
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II. Literature Review 

Chapter Overview 

Chapter II focuses on several topics of interest for this research including (1) the 

effect of counterfeit parts on the government, industry, and consumers; (2) current 

methods for detecting counterfeit parts; (3) preventative measures to deter counterfeiting; 

(4) recent research on electromagnetic emissions and signatures; and (5) a brief overview 

of the APREL EM-ISight tool. The first topic discusses major concerns and vital statistics 

regarding counterfeit items that plague the electronics world. The second subject 

discusses, in more detail, the approaches currently used to identify counterfeit parts. The 

third item examines some of the procedures, policies, and new device technology that are 

being implemented to make new parts less susceptible to counterfeiting and to prevent 

the purchasing of counterfeit items. The fourth topic investigates research topics and 

current results from electromagnetic emission/signature tests. Finally, an overview of the 

system utilized in this research will be described. 

Statistics and Impacts from Counterfeit Parts 

The government has tracked and reported the increase of electronic counterfeit 

parts over the past 15 years. The Bureau of Industry and Security (BIS) assessment 

focused on five segments of the supply chain – the Original Component Manufacturer 

(OCM), distributors and brokers, circuit board assemblers, prime 

contractors/subcontractors, and DOD agencies; that investigated 387 companies and 

organizations over a three year period between 2005 to 2008 (U.S. Department of 

Commerce, 2010).  Over this time period, the BIS documented the annual number of 
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counterfeit electronic incidents across the industry rose from 3,868 to 9,356. Out of the 

387 companies and organizations investigated, 39% encountered counterfeits at least 

once during this time period. The majority of these incidents occurred at the OCM level 

of the supply chain and were typically found in microcircuits, as opposed to discrete 

devices like capacitors, resistors, and inductors. A notable concern is the increase in the 

number of incidents on the Qualified Products List (QPL) and Qualified Manufacturers 

List (QML). Over three years, the number of incidents increased tenfold. This is a 

concern since many DOD entities purchase items from this approved list and about 60% 

of the authorized distributors had an incident with counterfeit electronics (U.S. 

Department of Commerce, 2010). 

From a 2009 survery, conducted by the US. Department of Commerce, 55% of 

distributors used internal, contractor, or both types of testing facilities to detect 

counterfeit parts. In the other segments of the supply chain less than 55% of companies 

conduct testing for counterfeit products, with only 11% of board assemblers completing 

testing. Used products, marked as new or higher grade, account for the majority of 

incidents found during the survey. The survey also found most of these products came 

from China at every level of the supply chain.  

Counterfeit electronic parts are making their way through the supply chain and 

into consumers’ hands. Starting with the Organisation for Economic Co-operation and 

Development’s (OECD) original estimates from their 2005 data, the International 

Chamber of Commerce (ICC) launched a business initiative in 2011 called the Business 

Action to Stop Counterfeiting and Piracy (BASCAP) to estimate the global econmic and 

social impacts caused by counterfeiting and piracy. They estimated in 2015 the total 
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value of counterfeit and pirated products for the G20 economies will be between $1.2 and 

$1.7 trillion dollars. Furthermore, 2.5 million jobs have already been lost due to 

counterfeiting and piracy (International Chamber of Commerce, 2011).   

There are various impacts to government, industry, and consumers from the 

introduction of counterfeit products. National security and safety are the primary 

concerns for the U.S. Government, in addition to loss of tax revenues. Counterfiet 

electronic parts found in companies cause damage to their business image and ultimately 

lead to a loss of sales and an imposed cost to replace failed parts and mitigate the risk of 

future encounters. After customers insert counterfeit items into their intended system, 

associated costs due to failure, lower quality, or poor reliability can escalate the 

maintenance and/or replacement cost. Degraded performance is a leading concern to the 

end user (Rostami, Koushanfar, & Karri, 2014). When faulty parts are placed in major 

vehicles, such as a satellite, a whole program/mission can be terminated when a single 

part fails. Additionally, safety is always a prime concern, especially on manned 

platforms. Counterfeit electronic parts pose a threat to every person, company, and 

platform that interacts with the item (Aerospace Industries Association, 2011).  

Detection Methods  

Current counterfeit parts can be categorized into two major types of defects: (1) 

physical defects and (2) electrical defects (Guin, DiMase, & Tehranipoor, 2014). Physical 

defects can be detected by optically inspecting the exterior of the part for labeling 

inconsistencies, damaged leads or bonds, dimension analysis, blacktop testing, etc. 

Interior tests such as material analysis, X-Ray scans, de-lidding, Scanning Acoustic 
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Microscopy (SAM), Scanning Electron Microscopy (SEM), and Raman Spectroscopy are 

examples of the standard practices to find physical defects in counterfeit parts. Electrical 

defects are more difficult to detect and often require extensive characterization to 

determine if the item is a counterfeit. Group A testing is comprised of a “device’s full 

functional and parametric requirements at the recommended manufacturer’s or specific 

industry extreme operating temperatures” (Frederico, 2009). In addition to Group A 

testing, burn-in tests and accelerated life testing is utilized to predict device performance. 

Taxonomies of counterfeit component types, the detection methods, and 

defects/anomalies found in counterfeit electronic components are included in Appendix A 

(Guin, DiMase, & Tehranipoor, 2014). 

A major focus is being placed on stricter standards, trusted supply chain 

assurance, certification testing, secure/anti-tamper chips, and new device identification 

methods. However, this research concentrates on investigating a robust technique for 

detecting counterfeit parts, especially for identifying functional, reused parts that are 

most likely labeled at a higher quality than the manufacturer originally intended. It uses a 

non-destructive and cost effective method to collect and compare parts’ radiated 

emissions to identify major changes in the parts tested. 

Before Buying Parts 

 Before buying parts, several tasks can be completed to ensure the purchase is 

from a reliable source. If possible, replacement parts should be purchased from the OCM 

or Original Equipment Manufacturer (OEM). Simple tactics such as reviewing “product 

documentation, shippers, etc. in excruciating detail” prior to acquisition can help 

safeguard against buying counterfeit parts (Lowry, 2007). Watching for misspellings, 
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grammar issues, abnormal expressions, and wrong information when compared to 

original product documentation can be indications of a counterfeit supplier. Another 

warning sign when looking up items online are short-lived websites. This is a good 

indicator that the supplier is illegitimate. A way to confirm this suspicion is to utilize 

either an internal or public Qualified Suppliers List for Distributors (QSLD) or a 

Qualified Suppliers List for Manufacturers (QSLM) (Aerospace Industries Association, 

2011).  

External Visual Inspection and Testing 

 Upon receipt, regardless of the supply chain level, external visual inspection is 

typically the quickest and least expensive method to detect simple counterfeiting 

techniques. For example, basic inconsistencies in logo, part number, documentation (or 

lack thereof), shipping material, spelling errors, and legibility are obvious clues the part 

has been tampered with and is most likely a counterfeit. If the part passes a rudimentary 

optical inspection a more detailed investigation can be completed. Physical defects such 

as dimensions, corrosion, color, lead straightness, and electrostatic discharge (ESD) 

damage may indicate improper handling or reuse of parts (Lowry, 2007; Guin et al., 

2014; Frederico, 2009).  

 A more thorough investigation of the part includes checking for signs of sanding, 

blacktopping, and marking permancy. Blacktopping can consist of sanding packaged 

devices down and then applying an epoxy with the shavings to create a new coating on 

the package. It is then typically painted black (the color of the package) and then printing 

a new logo to the exterior. One indicator of a counterfeit part is if the logo is smudged, 

coming off, or partially gone. Using certain slovents can often times remove labels or the 
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blacktopping to show the original package. Figure 1 shows two characteristics of 

counterfeit parts. 

  
Figure 1 Example of lead tampering (left) and blacktopping (right).  

(In Compliance, 2010) 

Non-Destructive Imaging and Testing 

 Inspecting a part without destroying it is preferred when selecting a detection 

method for the sake of reporting the part, getting a second opinion, or actually using the 

component if it is a non-counterfeit part. In addition to testing, there are a number of non-

destructive imaging techniques used to inspect the wire bonding of the pins and conduct a 

material analysis. A common practice is X-ray analysis which allows the user to look 

through the component’s package to inspect the internal structure of the part including 

the workmanship, location, and size or wire bonds (Lowry, 2007; Guin et al., 2014; 

Frederico, 2009). 

 
Figure 2 X-Ray images of four identically marked components showing different 

internal structures.  (In Compliance, 2010) 
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A number of costly, yet effective, microscopy scans can be conducted to 

determine the authenticity of an electronic part. These techniques include scanning 

acoustic microscopy (SAM), scanning electron microscopy (SEM), energy-dispersive X-

ray spectroscopy (EDXRS), Fourier transform infrared spectroscopy (FTIR), energy-

dispersive X-ray fluorescence (EDXRF), and Raman spectroscopy.   Although many of 

these techniques are non-destructive, they can include some sample preparation in order 

to characterize the device effectively. Some of the preparations include de-lidding, de-

capping, thinning, or coating samples. SAM refers to a technology that transmits an 

ultrasound wave through a medium and the reflected signal can be detected, processed, 

and developed into an image (Delta, 2015). In SEM analysis, a focused beam of high-

energy electrons produces a variety of signals from a sample. The interaction from this 

beam can create an image of the topography, “the external morphology, chemical 

composition, crystalline structure, and orientation of materials that make up the sample” 

(Frederico, 2009).  EDXRS uses X-ray excitation interaction with the sample to 

determine the chemical characterization or elemental analysis of a sample. FTIR uses a 

Fouirer transform to convert raw data into a spectrum  in order to identify organic or 

inorganic chemicals that elude to the type of polymer, coating, or contaminant on the 

device (Frederico, 2009).  EDXRF is similar to EDXRS except that a detector is used to 

convert X-ray energy into voltage signals and then processed and analyzed into data to be 

able to characaterize individual particles. Raman spectroscopy uses the scattering of light 

to observe vibrational modulation which ultimately characterizes material and 

crystallographic orientation of a sample. All of these techniques are beneficial and used 
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under certain circumstances. Table 11 in Appendix A depicts which test methods detect 

certain types of defects identifed in the different types of counterfeit electronic parts. 

Destructive Imaging and Testing 

When non-destructive testing is inconclusive, destructive procedures can be 

employed. An easy test to conduct is a hermiticity test on packaged parts. This test 

checks a supposedly sealed package for any leaks (Guin et al., 2014; Lowry, 2007). De-

capsulation/de-lidding allows the internal design to be inspected and check for any flaws 

or unprofessional workmanship in the bonding process. Focused ion beam (FIB) images 

often consist of some type of etch and/or deposition of material from/to the sample in 

order to obtain an appropriate image. 

Electrical testing is one of the best ways to verify if a part is either good or faulty. 

Basic functional and parametric tests should be conducted based on the manufacturer’s 

operational conditions (Lowry, 2007; Guin et al., 2014; Frederico, 2009). An initial burn-

in test ensures the reliability of the device. Operating the part at an elevated temperature 

induces a ceratin amount of stress on that part. This test can easily detect defective or 

lower grade parts (Guin et al., 2014). Accelerated life testing (ALT) is a time consuming 

endevor for quality parts. Month-long tests are run to determine functional performance 

and operational conditions. It stresses the device at high voltage(s) and temperature(s). 

This testing rapidly ages and degrades the device. Early failures can be characaterized 

into specific failure modes as shown in Figure 35 of Appendix A.  
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Avoidance Methods 

Today, emphasis is being placed on exhaustive processes, trusted supply chain 

assurance, certification testing, new device identification, and anti-tamper designs. 

Raising awareness and new technological designs are imperative to ensure the security 

and integrity of quality parts, as well as decrease the number of counterfeit items 

reproduced or repurposed. Whether a company is purchasing or fabricating products, 

there is a secure process to follow to help ensure the reliability of those components. Both 

of these topics will be discussed in more detail. 

Awareness and Process Countermeasures 

Increased awareness on the part of manufacturers, government agencies, and 

consumers is vital to reducing the number of counterfeit parts in everyday products and 

major programs (U.S. Department of Commerce, 2010). The Aerospace Industires 

Association (AIA) special report on counterfeit parts suggests a number of options that 

could be adopted or implemted to bring attention to this issue and some practices to 

ensure quality parts. The report includes topics such as “procurement, reporting, 

disposition, obsolescence and electronic waste” (Aerospace Industries Association, 

2011).  Adopting a standard such as AS5553 – Counterfeit Electronic Parts; Avoidance, 

Detection, Mitigation, and Disposition allows for uniformity across the industry and 

helps mitigate the risk of purchasing and installing counterfeit items. If a standard process 

is not implemented, developing and/or instating an internal purchasing process would 

help reduce risk as well. This process should include a review of approved 

manufactures/suppliers through a QSLD/QSLM and reports of suspected counterfeit parts 

through a database such as Government-Industry Data Exchange Program (GIDEP).  



15 

Training employees is an important factor in fortifying a compnay’s ability to 

identify couterfeit parts. Applying an inspection checklist encompassing visual checks, 

electrical tests, investigative imagery, and other procedures upon arrival of new items 

will allow supply chains and consumers to increase the liklihood of finding a counterfeit 

part prior to installation. Documenting these procedures, in addition to a list of 

screened/approved suppliers, component pedigrees, and lifcycle analysis tools in a 

control plan is a good practice for companies to prepare. This allows the company to 

evaluate component obsolescence when making major design decisions. During this 

process, if a counterfeit part is found, it is essential to report this issue with an unbiased 

reporting organization such as GIDEP. Not only do they document the item, but they 

allow the manufacturer to investigate the claim. The AIA report stresses that the company 

does not return the suspicious part to the vendor. If it is a counterfeit it will just get 

recirculated. Therefore, in this case it is recommended that the part be destroyed. 

(Aerospace Industries Association, 2011). 

Technical Countermeasures 

Technology is quickly evolving to ensure the security of electronic devices to 

compete against the growing counterfeit trade. Unique identifiers can be integrated at the 

chip or package level. At the chip level, Physically Unclonable Functions (PUFs) use 

unique intrinsic features from a circuit as identification. PUFs exploit basic process 

variations, both physical and environmental, that exist in ICs which are unpredictable and 

uncontrollable (Wang and Tehranipoor, 2010). These unique features are easy to create 

but almost impossible to duplicate, making them ideal for anti-tamper applications. These 

embedded signatures are all stored in a vendor’s secure database for future comparison. 
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Intellectual property (IP) rights are playing a major role in keeping ICs secure and 

protected. Techniques like hardware metering and Secure Split Test (SST) rely on IP 

rights. Hardware metering makes a small part of the design programmable at the time of 

configuration and then must be configured at the manufacturer. This process creates a 

unique chip ID that is difficult to reverse engineer (Koushanfar and Qu, 2001). Active 

metering locks every device until it is unlocked by the IP holder. Similar to hardware 

metering, “SST reestablishes trust into the IC fabrication and test process by 

reintroducing the IP owner in the IC testing procedure without requiring them to be 

physically present at the foundry/assembly” (Contreras, Rahman and Tehranipoor, 2013). 

Both procedures help prevent different types of counterfeit items. 

The Defense Advanced Research Projects Agency (DARPA) has initiated several 

programs to improve the trustworthiness and reliability of electronic parts. Three main 

programs include Trusted Integrated Circuits (TRUST), Integrity and Reliability of 

Integrated Circuits (IRIS), and Supply Chain Hardware Integrity for Electronics Defense 

(SHIELD). TRUST focused on a metrics based approach where contractors would 

determine the probability of detection versus the probability of false alarms. This method 

considered all changes to the IC, not only malicious attacks (DARPA TRUST, 2015).   

Due to globaliztion of the IC market, many companies have shifted their 

production lines to offshore foundries. This shift has led to a lack of regulation that opens 

a door for malicious attacks and counterfeit ICs to be integrated into a design that do not 

meet performance and reliability specifications. IRIS seeks to develop new techniques 

that will non-destructively derive the function of digital, analog, and mixed-signal ICs. 

Also, the program “will produce methods of device modeling and analytic proccesses to 
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determine the reliability of an IC by testing a limited number of samples” (DARPA IRIS, 

2015). 

 The surge in counterfeit parts has raised the question of security and integrity of 

electronic systems in the DOD. The DARPA SHIELD program focuses on creating a new 

anti-tamper “dielet” that can be inserted into the package of an IC. The dielet will act as 

identification as well as detect any attempt to access or reverse engineer the dielet 

(DARPA SHIELD, 2015).  

The focus on open foundaries and supply chain assurance is addressed in the 

Intelligence Advanced Research Projects Activity (IARPA) Trusted Integrated Chips 

(TIC) program. The concept of TIC is to create a split-manufaturing that allows both the 

academic world and US industries to have open access to design high performance ICs 

while still maintaining the quality and protection throughout the fabrication and 

intellectual properties (McCants, 2015). 

Another technical measure that can be utilized is scanning a parts electromagnetic 

(EM) signature. Every part emits a unique EM signature similar to that of a human 

fingerprint. The same types of parts will have similar signatures, but with a natural 

variation induced from fabrication. Major variations in the signatures are indications that 

the part could be recycled, damaged, have a different fabrication process, or in more 

severe circumstances tampered with. The following section goes into more detail on EM 

signatures and how it is pertinent to this research. 
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Electromagnetic Emissions and Signatures 

EM fields are produced through normal current fluctuations during circuit 

operation. Tiny process variations induce a slightly different emission to make a 

distinctive signature. There are two types of radiated emissions, (1) intentional radiated 

emission (IRE) and (2) unintetnional radiated emission (URE). There has been a 

multitude of research efforts in the form of RF emissions over the years (Cicchiani, 

Hartmuller and Sell, 2008; Montanari, Tacchini and Maini, 2008; Boyer, Ndoye and 

Dhia, 2009; I. Montanari, 2005; Boyer, Dhia and Li, 2013; DiBene II and Knighten, 

1997; Muccioli, North and Slattery, 1997; Cobb, Lapse and Baldwin, 2011; Cobb, Garcia 

and Temple, 2010). Much emphasis has been placed at the device or integrated circuit 

level and at a low frequency (below 1 GHz). Research has shown that stress on these 

parts--whether temperature, voltage, accelerated life tests, or aging--affect the EM 

signature. The EME can often show the signs of aging or failures in a system. Research 

completed at the device level determined some of the main failure mechanisms include 

time dependent dielectric breakdown (TDDB), hot carrier injection (HCI), and negative 

bias temperature instability (HBTI). 

Radio frequency distinct native attribute (RF-DNA) fingerprinting is a new way 

to identify embedded ICs through the collection of unintentional RF emissions (Cobb et 

al., 2010). This leaked information allows operational details of the device performance 

and data processing to be inferred (Cobb et al., 2011). The collection of EME is 

completed with the use of a near-field probe connected to an oscilloscope or a spectrum 

analyzer, depending on the specific type of test. At times, an anechoic chamber is utilized 
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to exclude an environmental emissions that would interfere (EMI) with the device or unit 

under test (DUT or UUT). 

Nokomis Inc. has recently developed a system to identify counterfeit electronic 

parts through a part’s URE. The Advanced Detection of Electronic Counterfeits (ADEC) 

system uses an ultra-sensitive Hiawatha receiver to form the core of the system. It 

currently has a database of 90 different types of parts from 6 distributors. ADEC uses a 

part’s URE to identify the part’s authenticity within a 5 second measurement. The system 

is still under development (Pathak and Keller, 2013). 

APREL EM-ISight Tool 

APREL is a Canadian-based company that originated with the development of an 

automated Specific Absorption Rate (SAR) test system in 1999 for near field 

measurements. SAR is a measure of the amount of RF energy absorbed by the body, 

often from a cell phone. In 2011 they released the EM-ISight system which is a flexible 

EMI/EMC (electromagnetic compatibility) measurement system. It performs near-field 

EM scans of a DUT to produce a 3-D representation of the field spectrum across the 

board. Common applications include EMI noise emission analysis, shield placement, 

design optimization, and possible susceptibility. Measurements are taken using either an 

E or H-field probe that acts as an antenna to collect the EMEs. A spectrum analyzer is 

connected to the LNA which interfaces with the EM-ISight system. The advanced 

software is used for setting up the test plan, automating data collection over a specified 

spectrum, and post-test data analysis. Figure 3 provides a block diagram of the EM-ISight 

system. 
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Figure 3 EM-ISight Block Diagram 

 
In this research, the EM-ISight tool is employed to take measurements at the 

circuit level. A DOE is established and conducted to optimize the set of scanning 

parameters to return the best responses for the test. The Methodology section below will 

describe details of the individual tests conducted. 

Summary 

Chapter II summarized several topics of interest for this research. It investigated 

the statistics and impacts of counterfeit items on the economy. From there, a variety of 

detection and avoidance methods were examined to prevent the implementation of 

corrupt parts into major systems. Finally, EM signatures and their susceptibility to 

stressful testing and aging were researched. Several methods focused on the failure 

mechanisms at the device level. These previous research topics are the foundation for this 

research to detect counterfeit items through an EM signature that signifies aging, failure 

mechanisms, or counterfeit parts implemented at the board level. 
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III. Methodology 

Chapter Overview 

The purpose of this chapter is to define the test methodology used to develop a 

DOE, collect data, and analyze the overall sensitivity of the system and the average 

process variations of the selected devices. The test equipment, selected device, and 

descriptions of what each test is composed of is defined and described in this chapter.  

Test Equipment 

 Several systems and COTS software are used in this research. The APREL EM-

ISight is comprised of a Denso robotic arm, a Denso robot controller, a boundary 

detection unit (BDU) attached to the arm, an E or H-field probe attached to the BDU, a 

low noise amplifier (LNA), a working base with device restraints, a validation micro-

stripline, a laptop that uses the EM-ISight V4.4 software, and various cables as shown in 

Figure 4. The majority of this equipment is enclosed in an anechoic chamber to reduce 

the effects of emissions of stray charges from other lab equipment.  

The APREL software allows the user to setup a test routine for the device under 

test (DUT) and automatically control the robotic arm to move throughout the X, Y, Z, 

and theta positions. The software collects the spectrum of data through communication 

with a Tektronix spectrum analyzer, model RSA6120A. Once all the data is collected the 

software features a data analysis capability to complete any post-processing analysis, 

including noise floor elimination and a comparative scan application to determine the 

differences between two identical scans. A Wiltron signal generator, model 68159B, is 

used for daily validation at a manufacturer calibrated frequency, in coordination with the 
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appropriate probe and micro-stripline. The validation process is described in more detail 

in the Test Setup section below. 

 
Figure 4 Aprel EM-ISight Test Setup (Front View) 
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Figure 5 Aprel EM-ISight Test Setup (Top View) 

Test Setup 

 The test setup is composed of several components including the system 

validation, board placement, and probe location reference in addition to the system setup 

described above. A system validation is done daily using the probe of interest at one of 

the specified frequencies recommended by the manufacturer. 300 MHz is the closest 

calibrated frequency that matches the center frequency for these tests and was used for all 

the system validations. Figure 5 shows these components utilized for the tests. 

After system validation, the test article is attached to the base unit to prevent it 

from moving during testing. The base unit was fabricated with threaded holes, at equally 

spaced intervals, in order to attach test articles directly to the base. Two of these holes, in 
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the base, line up directly with two corners of the board selected for testing in this 

research. Those two corners are screwed into the base unit to ensure stability. In addition 

to the two corners attached directly to the base unit, the opposite side is held in position 

with two adjustable device restraints. To ensure consistent physical placement of the 

multiple boards, the same two holes are used every time. By using the same holes to 

attach the different boards, the location of interest should not move. This allows for 

consistency of the physical test area and probe placement. For every test, the probe needs 

a reference location in the bottom left hand corner. This reference allows for the same test 

area to be used for all the scans, despite the spatial resolution. Finally, the whole suite of 

tests can be measured. More details on the suite of tests are described in the following 

sections.  

Device Under Test (DUT) 

 The device of interest is a Xilinx Spartan-6 FPGA chip housed on a Papilio Pro 

circuit board. This silicon-based device is a COTS product so it is cost-effective, easy to 

use, and offers the user the flexibility of reprogramming the device to induce a specific 

change. In this research, change is induced by alternating the programmed frequency 

from 305 MHz, using three inverters, to a frequency of 225 MHz, using 5 inverters. 

Figures 6 and 7 depict the Papilio board with Spartan-6 FPGA. Both the packaged and X-

ray image are portrayed. 
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Figure 6 Papilio Pro Circuit Board with Xilinx Spartan-6 FPGA (Gadget Factory, 2015) 

 

 
Figure 7 Xilinx Spartan-6 FPGA X-Ray image taken by Steve Tetlak (AFRL/RYDD, 

2015) 
 

 Twelve boards were purchased to complete the various test routines described in 

the following sections, one of which was damaged on arrival from the manufacturer and 

was not be used for testing. The micro-USB adapter was damaged and the part could not 

be turned on or programmed. This part was used as a practice part for the etching process. 

Table 1 describes the allocation of devices for each test. The number of devices was 

selected based on the real-world application and constraints (time, money, and resources) 

of this project in the laboratory environment. The sample size is not large enough to be 

statistically significant, but this is what resources were allocated for this project. To 

achieve statistically significant data (α = 0.05) and assuming an effect size of large with a 

power of 0.80, the minimal sample size would be 26 devices as shown in Table 2 from 
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Cohen’s “A Power Primer” (Cohen, 1992). With the current sample size of 11, for the 

process variation test, the experiment will only have a power of approximately 0.43 

rather than the recommend 0.80 as noted at the top of Table 2. 

Table 1 DUT Allocation 

 
 

Table 2 Minimal sample size based on effect size, power, test, and α. (Cohen, 1992) 

 

Device ID DOE Process Variation Test Sensitivity Test Etched Test
Device 1 X
Device 2 X
Device 3 X
Device 4 X X
Device 5 X
Device 6 X
Device 7 X X
Device 8 X
Device 9 X

Device 10 X X
Device 11 X
Device 12 Damaged
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Test Routines 

 A brief description of the test routines was mentioned in the previous section as it 

applies to the particular device(s) and sample size. Below is a block diagram that 

illustrates the testing process for this research. Each of the blocks is described in more 

detail below. 

 
Figure 8 Test Routine Block Diagram 

 
Develop DOE 

 The initial step in this multi-step process is to develop a DOE including all the 

independent and dependent factors. For this set of experiments there are five independent 

factors, each with two levels, and there are two dependent factors. The five independent 

factors are probe type, Z-height, spatial resolution, frequency range, and resolution 

bandwidth (RBW). There are two probe types, E and H-field probes. Past experience has 

indicated that a scan using the E-field probe portrays more of the functionality of the 

device, as opposed to a scan with an H-field probe which depicts more of the operational 

aspects of the circuit. The Z-height varied between 1 mm and 5 mm above the device 
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depending on the test. Spatial resolution refers to the X, Y-grid spacing over the device; 

the smaller the resolution, the more points that were measured over the device area. The 

spatial resolution varied between 0.2 mm and 1 mm over the device depending on the 

test. The frequency range describes the total frequency spectrum range with the center 

point of 300 MHz. The two levels for the frequency range are 100 MHz and 500 MHz 

depending on the test. The incremental spacing used in frequency range refers to the 

RBW. The RBW is typically automatically set to 10 kHz, but for this set of tests it will 

vary from 100 Hz to 10,000 Hz (10 kHz). The independent factors and their levels are 

listed in Table 3. 

Table 3 Independent Factors and Levels 

 
 

 As mentioned previously, there are two dependent factors--peak programmed 

frequency and time of scan. Frequency magnitude measured in dBm0 is the key 

component of the peak programmed frequency and is the main response for the DOE. 

Several other components of the peak programmed frequency are subjectively analyzed. 

These components include the peak programmed frequency, the peak’s X, Y, Z spatial 

locations, and the width of that peak. The time of scan is measured in minutes from the 

time data collection starts at point 1 until it collects all the data at all points selected 

based on the test setup. The dependent factors are listed in Table 4. 

Table 4 Dependent Factors 

Independent Factor Low Level High Level
Probe E-field H-field

Z-Height 1 mm 5 mm
Spatial Resolution 0.2 mm 1 mm
Frequency Range 100 MHz 500 MHz

RBW 100 Hz 10,000 Hz
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The DOE consists of five factors (the five independent factors) at two levels each. 

A full, half, and quarter factorials are all viable options, but based on the constraints 

noted above and due to the objective of identifying those factors with large effects, a half 

fractional factorial (25-1) design with center points is sufficient for this DOE. Screening 

experiments such as this are typically performed in the early stages of a project to 

determine significant factors. The center points are included as a checking mechanism 

throughout the DOE and eliminate the assumption of linearity.  

Randomly Test 

A total of twenty tests were established in the DOE, sixteen from the half 

fractional factorial design plus four center points. The run order was randomized to 

eliminate potential bias or day-to-day variations. Randomizing the experiments allows for 

more reliable and valid data. Table 5 shows the randomized test order used for this 

research. The four center points are scattered throughout the test sequence of the DOE to 

check for consistency. For the DOE, the FPGA is programmed as a ring oscillator at a 

frequency of 305 MHz, using 3 inverters to act as a point source. Two nuisance factors 

were defined in this research – room temperature and humidity. These factors may have 

an effect on the response, but are not controlled. Therefore, the ambient values were 

monitored throughout the various tests with a temperature/humidity data logger. Their 

effects are outside the scope of this research effort, and were noted as nuisance factors. 

 

 

Dependent Factors Component
Peak Programmed Frequency Magnitude

Time of Scan Minutes
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Table 5 DOE Test Order and Sequence 

 
*Center points are highlighted gray. 
 
Optimize Factors 

After the data are collected for the DOE designed above, all factors and responses 

are analyzed (described in Chapter IV). From the gathered data, significant factors are 

determined. Then the factors can be optimized to produce the desired responses based on 

this DOE. Ideally, the optimized factors will produce a high magnitude peak programmed 

frequency in a short scan time. Means and standard deviations of the peak programmed 

frequency are calculated from the various scans. 

Measure Variations 

RunOrder StdOrder Probe Z-Height 
(mm)

Spatial Resolution 
(mm)

Frequency 
Range (MHz)

RBW 
(Hz)

1 16 H 5 1 1000 10000
2 19 E 3 0.6 750 5000.5
3 4 H 5 0.2 500 10000
4 20 H 3 0.6 750 5000.5
5 3 E 5 0.2 500 1
6 13 E 1 1 1000 10000
7 2 H 1 0.2 500 1
8 5 E 1 1 500 1
9 8 H 5 1 500 1

10 11 E 5 0.2 1000 10000
11 1 E 1 0.2 500 10000
12 7 E 5 1 500 10000
13 18 H 3 0.6 750 5000.5
14 14 H 1 1 1000 1
15 10 H 1 0.2 1000 10000
16 17 E 3 0.6 750 5000.5
17 6 H 1 1 500 10000
18 15 E 5 1 1000 1
19 9 E 1 0.2 1000 1
20 12 H 5 0.2 1000 1
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With the optimization of the factors, the process variations between the 11 boards 

can be scanned and compared. Once again the FPGA is programmed as a ring oscillator 

at a frequency of 305 MHz. Subtle changes in the signature can be attributed to basic 

fabrication practices that create a unique fingerprint for each device. Extreme variations 

can be linked to a process defect, a counterfeit device, or an indication of tampering. 

Overall, this can be used as a designator that the part should not be used in the end 

system. The means and standard deviations of the different boards are calculated to 

account for the normal process variation. This is an important feature that is fed forward 

in the next test routine. 

Analyze Sensitivity 

After the average process variation was calculated from the tests described above 

the FPGA was reprogrammed (still as a ring oscillator), by using a different number of 

inverters (5 instead of 3) to adjust the frequency from 305 MHz to 225 MHz. This value 

was selected in order to be outside the range of the natural manufacturing variance.  

Scan Etched Part 

The final part tested was a board that had part of the packaging etched away in 

order to expose the die and bond wires. Another scan with the optimized factors and the 

original programming as a ring oscillator at 305 MHz is completed. The purpose of this 

scan is to determine if the package provides any shielding that may lower the magnitudes 

or narrow the widths of any frequencies. 

X-ray images were taken using an Xradia (now Zeiss) Micro XCT200. Figures 9 

and 10 display the X-ray 2-D and 3-D images of the FPGA. The 2-D image had a 30 

second exposure with 150 kV source and a 10 W beam energy. The 3-D image had the 
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same parameters, but it was averaged three times from -91 to 91 degrees. The 3-D scan 

took approximately 6 hours. Silver paint had to be added to the top of the package to act 

as an absorbing coat in order to clearly see the epoxy package surface. The epoxy 

package could not be seen in the original scan due to all the peripheral circuitry. Also, 

cable connectors absorbed too much of the low energy X-rays, that usually would have 

been absorbed by the mold compound. Figure 11 shows the relative measurement from 

the top of the wire bond to the backside of the package to be approximately 150 um. This 

is the distance that must be etched through to expose the bond wires. 

 
Figure 9 Xilinx Spartan-6 FPGA top view X-Ray image taken by Steve Tetlak 

(AFRL/RYDD, 2015). 
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Figure 10 Xilinx Spartan-6 FPGA 3-D cross section X-Ray image taken by Steve Tetlak 

(AFRL/RYDD, 2015). 

 
Figure 11 Xilinx Spartan-6 FPGA 3-D cross section measurement X-Ray image taken by 

Steve Tetlak (AFRL/RYDD, 2015) 
 

The information from Figure 11 allows the process engineer to determine the 

parameters for the etching process. Board 12 (the damaged board) was originally used as 
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a practice board by the process engineer. This board was etched for 45 seconds in a nitric 

and sulfuric bath using a Nisene JetEtch II. This duration damaged the board beyond use. 

The second board, Board 10, was etched in the same nitric and sulfuric bath for only 10 

seconds using a Nisene JetEtch II. The parameters of the etch were not optimized due to 

the limited number of samples available to refine the process. The center of the package 

was etched out to expose the die and the bond wires. Figure 12 displays the final outcome 

of the etching. 

 

 
Figure 12 Xilinx Spartan-6 FPGA etched for 10 seconds (Etching performed by Jim 

Alverson, AFRL/RYDD, 2015). 
 

Compare All Scans 

After each set of tests, the scans were analyzed and compared to similar scans 

with matching conditions. The EM-ISight V4.4 software has a delta plot application that 

compares two scans taken at separate times, with the same test parameters (frequency 

range, spatial resolution, etc.) and creates an EM signature plot that displays the 

difference between the two scans. This feature is useful for determining variations in 

magnitude, location displacements, and frequency shifts throughout the spectrum. The 
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delta plots are used to analyze the differences in the programming for the sensitivity 

analysis and the difference in the shielding effects in the etched board test. 
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IV. Analysis and Results 

Chapter Overview 

This chapter discusses the application of the methodology and the results of the 

various tests outlined in Chapter III. Analysis of the responses from the DOE is 

completed to determine significant factors and their interactions. These factors are then 

optimized based on the desirability of each response. This optimization was used for the 

remainder of the tests including the process variation, sensitivity, and etched tests. 

Frequency and magnitude plots are illustrated for a visual representation of the responses 

on the FPGA. Frequency spectrums are used as well to depict the difference between 

tests. 

DOE Test Results 

Twenty tests were conducted over three days for the DOE. Two nuisance factors, 

temperature and humidity, were measured throughout this time period. These factors are 

depicted in Figure 13. The temperature varied between 70 and 80oF while the relative 

humidity fluctuated between 40 and 50%. This small change in factors did not appear to 

have a significant effect on the DOE test responses. These responses are highlighted 

yellow in Table 6. The two responses measured for the DOE were the magnitude (dBm0) 

of the peak programmed frequency and the total time (minutes) taken to scan the entire 

FPGA. The magnitude plots are in dBm0. The magnitude units started as raw data (dBm) 

collected from the spectrum analyzer and then the EM-ISight software extracted all the 

losses and gains throughout the system as depicted in Figure 3 from Chapter II. This 

includes the probe coupling loss, LNA gain, BDU loss, cable losses (3 calbes total), and a 



37 

custom compensation factor for each manufacturer calibrated frequency. All of these 

were measured in dBm. Equation 1 calculates the the total dBm0 value for every 

measured point. For frequencies not included in the manufacturer’s table, the software 

takes a linear interpolation between the two closes frequencies for the equation. A table 

of the calibrated frequencies for each probe can be found in Appendix B. 

 
Figure 13 Plot of nuisance factors over DOE test period. 

 
dBm0 = dBm - [Probe Coupling Loss (Vp_dBm)] - [LNA Gain] - [BDU Loss] - [Cable 

Losses (C1 to C3)] - [Custom Compensation Factors (K2 + K3)] 
Equation 1 Calibrated Magnitude Value.  

 
In addition to the two responses recorded in Table 6, several supplementary 

responses were documented. Table 7 encompasses these responses. It includes the 

number of peaks, the peak programmed frequency (MHz), that frequency’s magnitude 

(dBm0), location (X, Y, Z), and the frequency width (MHz) for the programmed peak. 

The mean and standard deviation of each of these responses was calculated and is 

displayed in the last two rows of the table.  
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Table 6 DOE Responses 

 
*Center points are highlighted gray. 
   

 

 

 

 

 

 

 

 

Run 
Order

Time 
Start

Time 
End

Probe Z-Height 
(mm)

Spatial Res 
(mm)

Frequency 
Range 
(MHz)

RBW 
(Hz)

 FreqMag 
(dBm0)

Scan 
Time 
(min)

1 806 816 H 5 1 500 10000 -26.49 10
2 823 845 E 3 0.6 300 5050 -24.65 22
3 954 1128 H 5 0.2 100 10000 -26.51 94
4 1140 1203 H 3 0.6 300 5050 -22.23 23
5 1207 1341 E 5 0.2 100 100 -28.49 94
6 1346 1356 E 1 1 500 10000 -18.65 10
7 1402 1538 H 1 0.2 100 100 -16.21 96
8 1545 1551 E 1 1 100 100 -18.87 6
9 1558 1603 H 5 1 100 100 -27.01 5
10 1618 2006 E 5 0.2 500 10000 -27.76 228
11 812 946 E 1 0.2 100 10000 -18.49 94
12 956 1011 E 5 1 100 10000 -24.84 15
13 1006 1028 H 3 0.6 300 5050 -22.72 22
14 1037 1047 H 1 1 500 100 -16.59 10
15 1051 1440 H 1 0.2 500 10000 -16.11 229
16 1446 1508 E 3 0.6 300 5050 -22.98 22
17 1513 1518 H 1 1 100 10000 -16.79 5
18 1523 1535 E 5 1 500 100 -25.12 12
19 1537 1926 E 1 0.2 500 100 -17.72 229
20 948 1336 H 5 0.2 500 100 -26.37 228
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Table 7 Supplementary DOE Responses 

 
*Center points are highlighted gray. 

 Figure 14 shows an enlarged view of the frequency spectrum plots to show more 

detail. For viewing purposes, the frequency spectrums for the DOE tests are split into two 

figures, Figures 15 and 16. The frequency spans from 50 to 550 MHz with a center 

frequency of 300 MHz for the X-axis and -60 to 7 dBm0 for the Y-axis. There are several 

grayed out areas. These areas indicate a non-constant noise floor. For the E-field probe 

everything below 150 MHz is considered noise and for the H-field probe everything 

below 100 MHz is considered noise. Eliminating these areas allows for a more consistent 

noise floor and comparison of the peak magnitudes. 

Run 
Order

Test Conditions # Peaks Prog Peak 
Freq (MHz)

Prog Freq Mag 
(dBm0)

Prog Freq Loc     
(X, Y, Z)

Prog Freq Width 
(MHz)

1 H, 5, 1, 500, 10000 18 306.25 -26.49 (13.99, 20, 5) 13.75
2 E, 3, 0.6, 300, 5050 15 307.5 -24.65 (13.79, 19.8, 3) 9.375
3 H, 5, 0.2, 100, 10000 6 307.375 -26.51 (14.21, 19.8, 5) 10.375
4 H, 3, 0.6, 300, 5050 12 306 -22.23 (13.79, 19.8, 3) 12.375
5 E, 5, 0.2, 100, 100 6 303.25 -28.49 (14.78, 6.4, 5) 10.75
6 E, 1, 1, 500, 10000 20 305.625 -18.65 (13.99, 20, 1) 10.625
7 H, 1, 0.2, 100, 100 7 305.875 -16.21 (13.79, 20, 1) 13.25
8 E, 1, 1, 100, 100 7 305.625 -18.87 (12.99, 19.99, 1) 9.75
9 H, 5, 1, 100, 100 7 307 -27.01 (14, 20, 5) 10.125

10 E, 5, 0.2, 500, 10000 20 303.125 -27.76 (19.02, 4.99, 5) 11.25
11 E, 1, 0.2, 100, 10000 6 306.375 -18.49 (13.39, 20, 1) 12.75
12 E, 5, 1, 100, 10000 6 303.375 -24.84 (16, 19.99, 5) 12.25
13 H, 3, 0.6, 300, 5050 13 306.375 -22.72 (13.81, 19.19, 3.01) 12.75
14 H, 1, 1, 500, 100 18 305.625 -16.59 (13.99, 20, 1) 13.75
15 H, 1, 0.2, 500, 10000 18 305.625 -16.11 (13.58, 20, 1) 13.75
16 E, 3, 0.6, 300, 5050 14 303.375 -22.98 (13.19, 19.8, 3) 12
17 H, 1, 1, 100, 10000 7 306.75 -16.79 (13.99, 20, 1) 13.125
18 E, 5, 1, 500, 100 18 303.125 -25.12 (14.99, 20, 5) 11.25
19 E, 1, 0.2, 500, 100 18 305.625 -17.72 (13.19, 20, 1) 10.625
20 H, 5, 0.2, 500, 100 18 306.25 -26.37 (13.79, 20, 5) 10.625

12.7 305.50625 -22.23 (14.21, 18.5, 3) 11.725
5.58 1.45 4.36 (1.32, 4.39, 1.84) 1.42

Mean
Standard Deviation
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Figure 15 DOE Frequency Spectrum Tests 1-10 
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Figure 16 DOE Frequency Spectrum Tests 11-20 
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Figure 17 is an enlarged view of the frequency and magnitude plots, in order to 

show more detail. The plots on the left show the number of points used for the scan and 

in this case, the dimensions of the DUT as well since the spatial resolution was 1 mm. 

The plots on the right depict the APREL signatures overlaid on the X-ray image of the 

FPGA. In all the plots the blue dot or circle indicates the location with the highest 

magnitude.   

 Figures 18 and 19 represent the overall frequency and magnitude plots of the 

peak programmed frequency. The E-field tests show majority of the part radiating at the 

peak programmed frequency, whereas the H-field tests act as a point source that 

decreases in magnitude away from the point on the upper right edge of the device. The 

shape of the frequency plots vary between the E and H-field tests. The H-field tests have 

a funnel shaped design for the programmed frequency whereas the programmed 

frequency for E-field tests consume between 75-100 percent of the device. These unique 

map signatures can be a potential diagnostic tool for counterfeit electronic parts analysis.  
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Figure 17 Enlarged Frequency and Magnitude Plots 
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Test Freq 
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Freq 
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(MHz) 
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10 

  

Figure 18 DOE Frequency and Magnitude Plots Tests 1-10 
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Figure 19 DOE Frequency and Magnitude Plots Tests 11-20 
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An analysis of variance (ANOVA) was computed for each response using JMP 

V10. The significant factors and interactions are shown in Figure 20 for the frequency 

magnitude response and Figure 21 for the scan time response. The only significant factor 

to effect frequency magnitude was the Z-height (outlined in red). This implies that a 

stronger signal is received through the probe when the probe is closer to the device. The 

signal strength decreases as the probe moves further away.  

 
Figure 20 Frequency Magnitude Response Significant Factor (JMP Output) 

 

The scan time response also had one significant factor, but had another almost 

signifigant factor and interaction that is worth noting (outlined in blue). The spatial 

resolution (outlined in red) is the significant factor for the response time. Therefore, the 

more points measured, the longer the scan time. The frequency range is outside the 0.05 

alpha value, but is the next significant factor after spatial resolution. The interaction of 

these two factors, spatial resolution and frequency range, also produce an almost 

significant response.  
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Figure 21 Scan Time Response Significant Factor (JMP Output) 

 

 Because a factor and an interaction were close to being significant, another 

ANOVA was run with only three factors: Z-height, spatial resolution, and frequency 

range. There was no change in the magnitude response. The Z-height remained the only 

significant factor. However, running the ANOVA with three factors produced a different 

result for the scan time response. Figure 22 shows that there are two significant factors 

(spatial resolution and frequency range) and one significant interaction (spatial resolution 

* frequency range).This verifies that the frequency range and the interaction between the 

spatial resolution and frequency range are significant when the non-significant factors are 

taken out of the equation. 
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Figure 22 Scan Time Response Significant Factors and Interactions with Only Three 

Factors (JMP Output) 

After reviewing the significant factors, all the factors were optimized based on the 

response desirability. The desired response is measured on a scale from 0 (not desired) to 

1 (desired). A higher frequency magnitude and a lower scan time are the desired 

outcomes for every scan. The optimization of the factors based on those desired outcomes 

is highlighted in red in Figure 23. These optimized settings are used for the remainder of 

the tests in this research. Those factor levels are the H-field probe, 1 mm Z-height, 1 mm 

spatial resolution, 500 MHz frequency range, and 100 Hz RBW. 

 
Figure 23 Factor optimization based on desirability 



50 

Process Variations Test Results 

 To determine the process variations, over the various boards, all the boards were 

tested using the optimized factor settings selected above. The results along with the 

means, differences, and standard deviations of these tests are located in Table 8. Board 1 

and 12 did not work properly as demonstrated by the orange rows. Board 1 arrived in 

functional condition from the vendor and was programmed as a ring oscillator at a 

frequency of 305 MHz using three inverters. When the part was powered up to verify 

accurate programming, the programmed peak was at approximately 320 MHz. The signal 

shifted from 320 to 380 MHz over the course of a few minutes while the board warmed 

up. Once the board was powered down and turned back on, the programmed signal was 

gone altogether. The board was still scanned to show what a bad device looks like. Board 

12 was delivered with a broken micro-USB connector. The board was never programmed 

and was used as a trial chip for the etching process, described in Chapter III. 

Table 8 Process Variations Results Table 

 
 

Board Frequency 
(MHz)

Location          
(X, Y, Z)

Magnitude 
(dBm0)

Width 
(MHz)

1
2 321.25 (13.99, 20, 1) -13.42 15
3 306.25 (13.99, 19.99, 1) -16.74 15
4 308.125 (13.99, 20, 1) -15.91 13.75
5 311.25 (14, 20, 1) -17.71 15
6 306.25 (13.99, 19.99, 1) -17.15 11.25
7 310 (14.01, 18.98, 1.01) -14.5 14.375
8 316.25 (13.99, 20, 1) -14.62 15
9 312.5 (13.99, 20, 1) -15.23 14.375

10 306.875 (12.99, 20, 1) -16.77 14.375
11 301.875 (13.99, 19.99, 1) -16.64 13.125
12

Mean 310.0625 (13.89, 19.89, 1) -15.869 14.125
Difference 19.375 (1.02, 1.02, 0.01) 4.29 3.75

Standard Deviation 5.59 (0.32, 0.32, 0.00) 1.38 1.19

Bad Device

Damaged
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 Table 8 shows the mean peak programmed frequency to be approximately 310 

MHz, with a standard deviation of 5.59 MHz. Figure 24 depicts each board’s peak 

programmed frequency magnitude with respect to the standard deviation. The blue box 

represents one standard deviation around the mean for both magnitude and frequency, 

yellow is two standard deviations and red is 3 standard deviations. Only one board 

(Board 2) was outside two standard deviations, three boards are within two standard 

deviations, and the rest are within one standard deviation. 

 

 
Figure 24 Programmed Peak Frequency and Magnitude by Board  

 
 Figures 25 and 26 display the consistency of peaks throughout the frequency 

spectrum with the exception of Board 1. As in the DOE, the frequency range from 50 to 

100 MHz is grayed out to account for the rise in the noise floor. The area of interest, in 

the frequency spectrum, is in the black box highlighted yellow.  
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Figure 25 Programmed Peak Frequency and Magnitude by Board 

 

Figure 27 illustrates the uniformity of the frequency and magnitude plots, with 

respect to location. The peak programmed frequency is located on the top right edge of 

the FPGA. That programmed frequency is also the dominant frequency for the upper 

right quadrant. 
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Figure 26 Process Variations Frequency Spectrum by Board 
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Board Freq 
Range 

Freq 
(MHz) 

Layered Freq 
(MHz) 

Mag 
Range 

Mag (dBm0) Layered Mag 
(dBm0) 

1 

 

N/A N/A 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 
Figure 27 Process Variations Frequency and Magnitude Plots by Board 
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 Once again, the temperature and humidity were measured throughout the tests to 

ensure consistent ambient settings. The temperature varied between 70 and 80oF, while 

the relative humidity fluctuated between 40 and 50%. These numbers are consistent with 

the DOE nuisance factors measured. This small change in factors does not appear to have 

a significant effect on the process variations. 

 
Figure 28 Process Variations Nuisance Factors 

Sensitivity Analysis Test Results 

 The purpose of the sensitivity analysis is to reproduce a similar signal to the 305 

MHz, but slightly shifted along the frequency spectrum and outside the limit of the 

process variations. By using five inverters instead of three the frequency shifted from 305 

MHz to 225 MHz. This signal is repeated at 450 MHz with a lower magnitude as a 

harmonic. Board 7 was utilized in this test to validate the feasibility of detecting another 
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programmed signal. Figure 29 depicts the 305 MHz, 225 MHz, and the delta frequency 

spectrums. The 305 MHz and 225 MHz are measured in dBm0 with a range from -60 to 7 

dBm0. The delta plot must be viewed in dB. The X-axis on the delta plot is from -34 to 

40 dB. The delta plot shows a large peak in the middle of the spectrum (around 310 

MHz) and then two small negative peaks at 225 MHz and 450 MHz. This accounts for 

the non-existent peaks in the 305 MHz measurement. 

 
Figure 29 Sensitivity Analysis Frequency Spectrums 

 
 The frequency and magnitude plots for the sensitivity analysis are shown in 

Figure 30. The frequency plots have a slight color differentiation from bright green to 

light green demonstrating a lower dominate frequency in the upper right quadrant of the 

part, between the 305 MHz programmed frequency and the 225 MHz frequency. The 

location however, is nearly identical for the peak programmed frequencies in each test. 

Not only are the magnitude values for 225 MHz and 450 MHz smaller, but the widths are 

narrower when compared to the original 305 MHz signal. 
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Board 7  
Test 

Frequency 
Range 

Frequency 
(MHz) 

Layered 
Frequency 

(MHz) 

Mag 
Range 

Mag 
(dBm0) 

Layered 
Mag 

(dBm0) 

305 
MHz 

 

 

225 
MHz 

 

Delta 

  

Figure 30 Sensitivity Analysis Frequency and Magnitude Plots by Test 
 

Table 9 Sensitivity Analysis Table 

 

Etched Test Results 

 The final set of tests consisted of etching one board in a nitric and sulfuric bath 

for 10 seconds, using a Nisene JetEtch II. The parameters of the etch were not optimized, 

due to the limited number of samples to refine the process. The center of the package was 

etched out to expose the die and the bond wires. The purpose of this test was to examine 

if the package provided any signal shielding. Overall, the magnitude had a minimal 

Board 7 Test Frequency 
(MHz)

Location          
(X, Y, Z)

Magnitude 
(dBm0 or dB)

Width 
(MHz)

305 MHz 310 (14.01, 18.98, 1.01) -14.5 14.375
225 MHz 226.25 (13.99, 20, 1) -18.03 9.375
450 MHz 453.125 (12.99, 20, 1) -29.63 13.125

305 MHz Delta (Positive ) 310 (14.01, 18.98, 1.01) 41.63 13.125
225 MHz Delta (Negative) 226.25 (13, 20, 1) -33.73 6.25
450 MHz Delta (Negative) 453.125 (13, 20, 1) -27.61 14.375
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change between the package and etched part. There appears to be slightly larger area on 

the device that has higher magnitude. 

 
Figure 31 Etched Frequency and Magnitude Plots by Test 

 
Board 10 

Test 
Freq 

Range 
Freq 

(MHz) 
Layered 

Freq 
(MHz) 

Mag 
Range 

Mag 
(dBm0) 

Layered 
Mag 

(dBm0) 

Packaged 

 

 

 

Etched 

 

Delta 

  

Figure 32 Etched Frequency Spectrums 
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 The main difference between the packaged and etched device is noticed in the 

width of the peak. The etched board has a narrower peak than the packaged board. This 

could infer that when the emission hits the package it slightly scatters the signal and 

creates a wider peak. Or another theory is that the dielectric properties of the package 

material is causing some resonances to shift slightly, and therefore increases the peak’s 

bandwidth. 

Table 10 Etched Analysis Table 

 

Investigative Questions Answered 

Chapter I discussed four investigative questions to be answered with this research. 

Each question is answered below based on the test results discussed in this chapter. 

- Can counterfeit electronic parts be detected using the part’s unintentional 

electromagnetic signature? 

A part’s unintentional electromagnetic signature is an indicator of a part’s health, 

as shown in the process variation tests executed in this research. Chapter V will describe 

several topics of study to further this research, to provide a well-rounded answer to this 

question. 

- How effective is the APREL EM-ISight at detecting counterfeit electronic 

parts? 

Board 10 Test Frequency 
(MHz)

Location          
(X, Y, Z)

Magnitude 
(dBm0 or dB)

Width 
(MHz)

Packaged 306.875 (12.99, 20, 1) -16.77 14.375
Etched 307.5 (13.99, 19.99, 1) -16.43 12.5

Delta (Positive) 303.75 (12.01, 18.98, 1.01) 20.2 5.625
Delta (Negative) 310 (12, 11, 1) -19.53 6.875
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The answer to this question is similar to the answer to the previous question. The 

APREL EM-ISight successfully detected and characterized a bad part during the process 

variation tests. The lack of peaks, at any frequency in the spectrum, is a key indicator in 

the identification of the defective part. This was shown in Figures 26 and 27. The system 

also successfully detected the programmed frequency change in the sensitivity analysis. 

The detection of both of the defective part in the process variation test and the 

programmed frequency change in the sensitivity analysis tests, provide a good foundation 

in the effectiveness of the APREL EM-ISight at detecting counterfeit electronic parts. In 

order to answer this question in its entirety more research and tests need to be conducted. 

Some of these suggestions are expanded upon in Chapter V. 

- What is the optimal test setup to detect parts? 

The DOE identified significant factors and interactions. The desirability of the 

two response factors were considered equally important. For this system a higher 

frequency magnitude and lower scan time are the desired effects of a scan. Optimizing 

each factor with those desired effects produced the following setting for each of the five 

factors: H-field probe, Z-height of 1 mm, spatial resolution of 1 mm, frequency range of 

500 MHz, and a RBW of 100 Hz. These were the optimal settings for this particular 

device and its specific programming. This may not be the case for every device. This 

research has evaluated the tradeoff between resolutions, both spatially and spectrally, and 

time and concluded that the time saved is worth the minimal degradation in resolution. 

- How repeatable are the test results? 

More testing with additional parts would need to be conducted in order to answer 

this question with any statistical significance. The tests performed in this research infer 
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that scans with similar setups would provide comparable results (same peaks, relative 

magnitudes at those peaks, etc.), but with the limited number of samples and tests, this 

question cannot be answered completely. See Chapter V for recommendations on future 

research. 

Summary 

Chapter IV provided a synopsis of the results of the DOE, process variations, 

sensitivity analysis, and etched part tests performed in this research. This research did not 

exhaust all the avenues required to ensure the identification of counterfeit parts and the 

repeatability of test results.  
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V. Conclusions and Recommendations 

Chapter Overview 

The purpose of this research was to identify the feasibility of using APREL’s EM-

ISight to detect a device’s inherent electromagnetic signature and use that signature to 

identify if a part is counterfeit or authentic. The initial steps for this research were to 

conduct a DOE to determine significant factors and then optimize all the factors to obtain 

the desired response. Several devices were measured at these optimized settings to 

acquire the variation in the parts, due to the manufacturer’s process. A sensitivity analysis 

was conducted to conclude that a programmed frequency change in the same part could 

be detected with this measurement. Finally, an etched part was measured to show that the 

packaging material provided minimal shielding, but did show a change in the peak width. 

Chapter V provides conclusions based on the results and analysis from Chapter IV and 

builds on those results, to recommend future areas of research and applications. 

Significance of Research 

Current counterfeit detection techniques are limited in their capability to identify 

counterfeit electronic parts due to time, cost, and effectiveness. 3-D EM mapping with 

the APREL EM-ISight opens an opportunity for a non-destructive and relatively quick, 

cheap, and effective detection technique to recognize counterfeit electronic parts. This 

technique can also be utilized for other research aspects such as failure analysis, health 

status of a part, circuit board design layout, and parts shielding.  
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Recommendations for Action 

 Working on this research brought about two recommendations for action. The 

first is a camera/probe integration for image processing. A combined camera probe with 

image processing would increase the accuracy for pinpointing components or a specific 

bond wire that is emitting the signal under investigation. The current method uses an 

uploaded image that can be cropped and rotated to mimic the DUT. The user is then 

responsible for lining up the probe and that image as accurately as possible. This leaves 

room for human error and is not as exact as a camera integrated into the probe. The 

system would then perform image processing to line up the DUT for a more exact 

representation. 

 A second recommendation is the development of a small scale probe array or 

array of arrays that can be placed over the entire DUT for simultaneous measurement of 

the EME. This simultaneous measurement would be beneficial, especially for digital 

circuits, by taking a single snapshot instead of taking a different measurement in time, as 

the probe physically moves around the DUT. This was not an issue for this research, due 

to the simplicity of the device selected, but it will be vital for more complex devices. In 

addition to simultaneously taking a measurement, it would be valuable to be able to select 

a specific probe or subset of probes in the array for isolating a particular area. 

Recommendations for Future Research 

 The initial recommendation for future research was originally addressed in 

Chapter III. The sample size is not large enough to be statistically significant. Future 

research should include more devices, in order to be statistically significant. In addition 
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to the number of devices tested, other elements can be introduced such as multiple 

vendors, different boards with the same device, or different versions of the same device. 

These different elements would add a deeper understanding of the types of variations in 

the EM signature that are to be expected. 

 Several factors can be added to the DOE to determine their impact. The main 

system factor that was not investigated in this research was the rotational angle of the 

probe. The software allows for a user to input any angle and the BDU/probe component 

will rotate to that angle and complete the measurement at the specified angle. This would 

most likely produce a different EM signature. In this research the ambient temperature 

and humidity were measured as a nuisance factor. Placing the DUT under multiple 

temperature settings, to see if it has any impact on the EM signature, would be another 

recommended test to better characterize a device.  

 Since recycled parts are one of the main contributors to counterfeit electronic 

parts, an ALT would help characterize a parts aging profile. This could also identify a 

part’s remainder of usable life. An aging profile would be a key element in the detection 

of reused parts. 

 Two other recommendations include full circuit board scans and the 

characterization of digital boards. The addition of harmful devices, malicious code, and 

viruses are becoming more prevalent in counterfeit electronic parts. The identification of 

these features, before the part is integrated into the final platform, is crucial to retain the 

integrity and reliability of the system.   
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Conclusions of Research 

This research established the viability of using APREL’s EM-ISight to detect a 

device’s inherent electromagnetic signature. A FPGA was utilized for its availability, 

flexibility, and ease of use. Although the classification of whether the part was a 

counterfeit part or not could not be determined, the system could be used as health 

diagnosis or failure analysis tool. Flagging a part due to its health can prompt further 

investigation of the integrity of the part. During the process variation tests it was obvious 

that Board 1 was not working properly when compared with the other 10 boards. The 

lack of activity and peak frequencies was a strong indicator that Board 1 was not 

functioning as intended.  

Another finding from this research is the characterization of the tradeoff between 

resolution and scan time. Both spatial and spectral resolutions were assessed. The 

nominal improvement in the resolution did not outweigh the time saved during the scan. 

A 10-minute scan characterized the part just as effectively as a 4-hour scan.  
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Appendix A 

Table 11 Assessment of counterfeit detection methods. (Guin, DiMase, & Tehranipoor, 
2014) 
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Figure 33 Taxonomy of counterfeit component types. (Guin, DiMase, & Tehranipoor, 

2014) 
 

 

Figure 34 Taxonomy of counterfeit detection methods. (Guin, DiMase, & Tehranipoor, 
2014) 
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Figure 35 Taxonomy of defects and anomalies present in counterfeit electronic 
components. (Guin, DiMase, & Tehranipoor, 2014) 
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Appendix B 

Setup Data 

Probe  
      Name: APRL_701-00113_H-Probe_6GHz_Broad6GhzLNA w/Shield 
      Serial Number: 701-00113 
      Probe Type: H_xy 
      Frequency Range: 10 KHz to 6 GHz 
      Model: ALS-EMIS-P-H-M2.2 
      Compensation Value: 0 
      Calibration Date: 3/24/3015 
     Calibration Standard: IEC 61967-6 2002 
             Ch_dB_APRL: 27.5041099464328 
             Ch_dB_IEC: 0 
 
Probe Factor Table 

Freq 
(MHz) 

Hx_dB 
Target (dB 
A/m) 

Vp_m 
(dBm) 

Vp_r 
(dBV) 

Cf_dB (dB 
S/m) 

K1_dB K2_dB K3_dB 

0.0100 -18.20 -123.70 -136.71 121.11 -2.60 0.00 0.00 
0.1000 -18.20 -111.50 -124.51 108.91 -2.60 0.00 0.00 
100.0000 -18.20 -56.40 -69.41 53.81 -2.60 0.00 0.00 
300.0000 -18.20 -47.90 -60.91 45.31 -2.60 0.00 0.00 
835.0000 -18.20 -39.20 -52.21 36.61 -2.60 0.00 0.00 
900.0000 -18.20 -37.70 -50.71 35.11 -2.60 0.00 0.00 
1600.0000 -18.20 -37.20 -50.21 34.61 -2.60 0.00 0.00 
1800.0000 -18.20 -37.10 -50.11 34.51 -2.60 0.00 0.00 
1900.0000 -18.20 -36.30 -49.31 33.71 -2.60 0.00 0.00 
2450.0000 -18.20 -33.70 -46.71 31.11 -2.60 0.00 0.00 
3500.0000 -18.20 -36.80 -49.81 34.21 -2.60 0.00 0.00 
5200.0000 -18.20 -37.00 -50.01 34.41 -2.60 0.00 0.00 
5800.0000 -18.20 -34.50 -47.51 31.91 -2.60 0.00 0.00 
6000.0000 -18.20 -39.70 -52.71 37.11 -2.60 0.00 0.00 

 
Probe  
      Name: APRL_710-00106_E-Probe_6GHz_Broad6GhzLNA 
      Serial Number: 710-00106 
      Probe Type: H_xy 
      Frequency Range: 10 KHz to 6 GHz 
      Model: ALS-EMIS-P-E-M2.2 
      Compensation Value: 0 
      Calibration Date: N/A 
     Calibration Standard: IEC 61967-6 2002 
             Ch_dB_APRL: 27.5041099464328 
             Ch_dB_IEC: 0 
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Probe Factor Table 
Freq (MHz) Hx_dB 

Target 
(dB A/m) 

Vp_m 
(dBm) 

Vp_r 
(dBV) 

Cf_dB 
(dB S/m) 

K1_dB K2_dB K3_dB 

0.0100 29.34 -143.50 -156.51 140.91 44.94 0.00 0.00 
0.1000 29.34 -123.50 -136.51 120.91 44.94 0.00 0.00 
100.0000 29.34 -68.50 -81.51 65.91 44.94 0.00 0.00 
300.0000 29.34 -54.50 -67.51 51.91 44.94 0.00 0.00 
835.0000 29.34 -47.10 -60.11 44.51 44.94 0.00 0.00 
900.0000 29.34 -45.70 -58.71 43.11 44.94 0.00 0.00 
1600.0000 29.34 -44.10 -57.11 41.51 44.94 0.00 0.00 
1800.0000 29.34 -44.10 -57.11 41.51 44.94 0.00 0.00 
1900.0000 29.34 -44.20 -57.21 41.61 44.94 0.00 0.00 
2450.0000 29.34 -41.80 -54.81 39.21 44.94 0.00 0.00 
3500.0000 29.34 -43.70 -56.71 41.11 44.94 0.00 0.00 
5200.0000 29.34 -48.60 -61.61 46.01 44.94 0.00 0.00 
5800.0000 29.34 -46.10 -59.11 43.51 44.94 0.00 0.00 
 
Signal Path Table 
Freq (MHz) PreAmp (dB) BDU loss 

(dB) 
C1 loss (dB) C2 loss (dB) C3 loss (dB) 

0.0100 15.90 0.00 -0.10 -0.10 -0.20 
0.1000 17.60 0.00 -0.10 -0.10 -0.20 
100.0000 32.00 0.00 -0.40 -0.30 -0.40 
300.0000 31.90 0.00 -0.60 -0.50 -0.70 
835.0000 32.10 0.00 -0.90 -0.90 -1.20 
900.0000 32.10 0.00 -1.00 -1.00 -1.30 
1600.0000 32.60 0.00 -1.30 -1.30 -1.70 
1800.0000 32.50 0.00 -1.30 -1.30 -1.80 
1900.0000 32.50 0.00 -1.40 -1.40 -1.80 
2450.0000 32.80 0.00 -1.60 -1.50 -2.10 
3500.0000 32.40 0.00 -1.90 -1.80 -2.50 
5200.0000 32.30 0.00 -2.30 -2.20 -3.10 
5800.0000 31.80 0.00 -2.40 -2.40 -3.30 
6000.0000 32.00 0.00 -2.50 -2.40 -3.30 
 
Pre-Amp 
      Name: BroadBand_6GHz 
      Input Impedance: 50 ohm 
      Frequency Span: 0.010 to 6 GHz 
      Linearity: +/- 1.5 dB 
      Dynamic Range: 13 dBm 
      Calibration Date: 3/24/3015 
 
Micro-Stripline 
      Name: APREL_MSL_6GHz 
      Serial No: 690-00109 
      Vs (dB V): -13.01 db V 
      h (mm): 0.6 mm 
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      w (mm): 1 mm 
      Impedance (dB): 50 ohm 
      Calibration Date: 3/24/3015 
 
BDU 
      Name: default_LineLoss 4.1 
      Description: Sum of BDU_L C1_L C2_L C3_L 
      Serial No: Do not modify this record 
      Model: 0001 
      Calibration Date: N/A 
 
Cable 1 loss 
      Name: default_C1Loss 
      Description:  
      Serial No: SN 642-00113 
      Model:  
      Calibration Date: 3/24/3015 
 
Cable 2 loss 
      Name: default_C2Loss 
      Description:  
      Serial No: SN 642-00112 
      Model:  
      Calibration Date: 3/24/3015 
 
Cable 3 loss 
      Name: default_C3Loss 
      Description:  
      Serial No: SN 642-00114 
      Model:  
      Calibration Date: 3/24/3015 
 
Instrument 
      SA Settings Name: 300 MHz 
      SA Serial No: B010217 
      Model: TEKTRONIX-RSA6120A 
      Calibration Date: 11/8/2015 
      Start Frequency: 50 
      Stop Frequency: 550 
      Frequency Step: 0.624219725343321 
      Frequency Units: MHz 
      AutoRBW: False 
      Resolution Bandwidth (RBW): 100 Hz 
      AutoVBW: True 
      Video Bandwidth (VBW): 5 Hz 
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      AutoAtt: True 
      Attenuation (dB): 25 
      Sweep Time (us): 0 us 
      Sweep Count: 1 
      Reference Level (dB): 0 
      EMITraceSize : 801 
      TraceSize : 801 
      TraceCompression : 0 
      ViewMode : RTSA_Mode 
      DetectionMode : PK+ 
      FunctionMode : Normal 
      DPXFreqStep : 0 
      DPXDwellTime : 0 
      DPXDotPersistance : 0 
 
Using probe calibration: StartF:50  StopF:550 probe Cf freq: 300 Cf_dB = 45.31. 
Device Under Test (DUT) 
      Name: FPGA 
      Serial No.: 1 
      Width: 20 mm 
      Height: 20 mm 
      Reference Point Denso WT(X,Y,Z): 135.28 , 153.24 , 23.66 
      DUT Description: Lg Board 
 
Measurement Profile 
      Profile Name: FPGA_Test 
 
      Number of layers: 1 
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